21PCM101P					Engineering Chemistry Practical					
Teaching Scheme					Examination Scheme					
L	T	P	C	Hours/Week	Theory			Practical		Total Marks
					MS	ES	IA	LW	LE/Viva	
0	0	2	1	2	--	--	--	50	50	100

COURSE OBJECTIVES

> To enhance and develop scientific and analytical skills
$>$ To relate concepts learned in chemistry and engineering to the real-world situations
> To acquire skills to perform laboratory experiments
> To demonstrate safe and proper use of standard chemistry glassware and equipment

List of Experiments

1. External Indicator-To determine the strength of given solution of ferrous ammonium sulphate by titrating against standard $\mathrm{N} / 40 \mathrm{~K} 2 \mathrm{Cr} 2 \mathrm{O} 7$ using potassium ferricyanide as an external indicator.
2. lodometry- To determine the strength of given copper sulphate solution by titrating against $\mathrm{N} / 20$ sodium thiosulphate (hypo) solution.
3. lodometry- To determine the strength of given ascorbic acid by titrating against standard N/10 iodine solution.
4. Complexometric titration- To determine the total, permanent and temporary hardness of given water by complexometric titration using standard 0.01M EDTA solution.
5. pH metric titration- To determine the strength of given HCl solution using a standard NaOH solution by performing a pH -metric titration.
6. Conductometric titration- To determine the strength of given HCl solution using a standard NaOH solution by performing a conductometric titration.
7. Potentiometric titration-To determine the strength of given HCl solution potentiometrically.
8. Chemical kinetics-To study the kinetics of decomposition of sodium thiosulphate by a mineral acid.
9. Chloride in Water- Determination of Chloride in the given water sample by Mohr Method
10. Polymerization-To prepare a polymer (Nylon 6,10), identify the functional groups by FT-IR
11. Spectrophotometry- To determine the $\lambda \max$ and concentration of given unknown potassium permanganate using UV-Visible Spectroscopy technique

Max. 28 Hrs.

COURSE OUTCOMES

On completion of the course, student will be able to
CO1: Apply the concepts learned in chemistry and engineering to the real-world situations.
CO2: Enhanced ability to identify, analyse and interpret the results from the experiments
CO3: Carry out quantitative analysis by instrumental method using conductometer
CO4: Analyse compounds by titrimetric, gravimetric and instrumental methods
CO5: Determine the concentration of unknown solutions by Spectrophotometric method
CO6: Investigate the reaction rate and predict the order and rate constant

TEXT/REFERENCE BOOKS

1. College Practical Chemistry, VK Ahluwalia, S Dhingra, A Gulati, Universities Press.
2. Foundations of Experimental Chemistry, JB Baruah, P Gogoi, PharmaMed Press.
3. A Text Book of Chemistry Practicals Vol I \& II, SS Sawhney, M S Jassal, SP Mittal, APH Publishing Corp.

END SEMESTER EXAMINATION QUESTION PAPER PATTERN

Part A: Lab Work - Continuous Assessment
Exam Duration: 3 Hrs.
50 marks
50 Marks

